
Informatica Economică vol. 17, no. 3/2013 49

DOI: 10.12948/issn14531305/17.3.2013.05

A GCM Solution for Leveraging Server-side JMS Functionality to

Android-based Trading Application

Claudiu VINŢE

Bucharest University of Economic Studies

claudiu.vinte@ie.ase.ro

The paper presents our solution for a message oriented communication mechanism, employ-

ing Google Cloud Messaging (GCM) on the client-side, and Java Message Service (JMS) on

the server-side, in order to leverage JMS functionality to Android-based trading application.

Our ongoing research has been focused upon conceiving a way to expose the trading services

offered by our academic trading system ASETS to a mobile trading application based on An-

droid platform. ASETS trading platform is a distributed SOA implementation, with an original

API based on JMS. In order to design and implement an Android based client, able to inter-

communicate with the server-side components of ASETS, in a manner consistent with publish-

er/subscriber JMS communication model, there was particularly necessary to have object im-

bedded messages, produced by various ASETS services, pushed to the client application.

While point-to-point communication model could be resolved on the client-side by employing

synchronous HTTP socket connections over TCP/IP, the asynchronously generated messages

from the server-side had to reach the client application in a push manner.

Keywords: Trading Technologies, JMS, GCM, Android Bridge Servlet, MOM

Introduction

Messaging and message oriented mid-

dlewares (MOM) have revolutionized, over

the past decade, the software solutions that

can be delivered through service oriented ar-

chitectures. Java Message Service (JMS) in-

terface, in particular, has proved to offer the

most flexible and opened manner for design-

ing complex distributed software systems,

ranging from social intercommunication ap-

plications, to enterprise resource planning,

internet banking, trading, and generic data

dissemination [1].

In tandem with the messaging solutions em-

ployed on the enterprise server-side, Android

powered mobile devices have become in-

creasingly popular, and the diversity and the

complexity of applications that the platform

supports, open novel perspectives upon the

way distributed computing and information

technology impact our daily life and busi-

nesses.

Our research project intends to expand the

reach of ASETS trading platform toward the

users of mobile devices powered by Android

OS.

ASETS trading platform features a distribut-

ed architecture, service orientated, being im-

plemented entirely in Java, and having an

original application programming interface

(API) designed and built upon JMS [2], [3].

Since the JMS libraries jms.jar and imq.jar,

required to access the messaging interface

that facilitates the communication with the

message provider (OpenMQ), are not cur-

rently available for the Android platform, we

needed to explore a different approach that

would provide a seamless communication

mechanism between a trading client, residing

on a mobile Android device, and the ASETS

trading platform.

ASETS platform offers a sophisticated API

for supporting rich Java applet trading cli-

ents, and provides services such as:

 Order Management Server (OMS);

 Portfolio Management Server (PMS);

 Exchange Simulation Engine (ESE),

which contains the order matching algo-

rithm;

 Pseudo Random Order Generator

(PROG), to create liquidity within the

simulation market;

 Delayed Data Feed (DDF), for feeding

the trading simulation platform with real

1

50 Informatica Economică vol. 17, no. 3/2013

DOI: 10.12948/issn14531305/17.3.2013.05

world pricing data, captured from Bu-

charest Stock Exchange (BSE).

Such a JMS based API could not be exposed

out of the box to an Android based trading

GUI. There have been researches and devel-

opments prior Google Cloud Messaging for

Android introduction, for interconnecting ap-

plications running on mobile devices with

JMS based systems [4], [5].

In the context of targeting to design and build

a trading client application for Android OS,

Google Cloud Messaging (GCM) service of-

fers a messaging mechanism with the follow-

ing main characteristics [6]:

 allows third party application servers to

send messages to Android-based appli-

cations;

 offers the ability to deliver messages to

an Android application on an Android

device, even if the application is not

running - as long as the Android based

application is set up with the proper

broadcast receiver and permissions, the

system will wake up the application via

Intent broadcast when a message arrives;

 the messaging service does not provide

any built-in user interface or other han-

dling for message data; GCM simply

passes raw message data received from

the producer straight to the Android ap-

plication which, subsequently, has full

control of how to handle it.

As for the ASESTS Android-based trading

application, the requirements for accessing

the GCM service are as follows:

 the Android application identifies itself

for registering to receive messages by

using an Application ID (the package

name from the manifest);

 when the Android application use for the

first time the messaging service, it calls

the GCM method register(), which

returns a Registration ID; the ID issued

by the GCM servers allows the Android

application to receive messages; the An-

droid application should store the Regis-

tration ID for later use (for instance, to

check in method onCreate() if it is

already registered; once the Android ap-

plication has the Registration ID, this is

sent to the ASETS server-side, which

uses it to identify each device that has

registered to receive messages for a giv-

en Android application; a Registration

ID is tied to a particular Android appli-

cation running on a particular Android

device;

 in order for the Android application to

register to the ASETS service responsi-

ble with the generation of the messages

to be sent to GCM service, it needs to

know the Sender ID, which is the identi-

fication of the third party server within

the GCM service cloud.

2 The Architecture of the Proposed Solu-

tion
Taking into account all the above briefly in-

troduced elements, there arose the necessity

for conceiving a software component that

would act as a bridge between the Android

based trading application and the ASETS

server-side, along with application program-

ming interface designed to support the com-

munication between the software bridge and

the Android application. In addition, the ex-

isting asets.api interface had to be reor-

ganized, in order to make a separation be-

tween the classes that implement the business

payload to be carried by the messages, and

the classes that are dedicated to handle the

communication part:

 asets.android.api

 asets.jms.client.api

 asets.jms.server.api

 asets.data.api

The first three APIs are communication ori-

ented ones, and were to be built on the top of

asets.data.api, which implements the busi-

ness objects employed by ASETS trading

platform, as we briefly introduced the ap-

proach in [7].

GCM specifications state that every message

sent in GCM has by default the following

characteristics:

 a data payload limit of 4096 bytes.

 it is stored by GCM for 4 weeks.

Informatica Economică vol. 17, no. 3/2013 51

DOI: 10.12948/issn14531305/17.3.2013.05

In GCM terms, our solution employs mes-

sages with payload, or non-collapsible mes-

sage.

Unlike a send-to-sync message or collapsible

message, where each new message replaces

the preceding one, every non-collapsible

message, or a message with payload, it is de-

livered individually. The data payload that

the message contains can be up to 4kb. In or-

der to specify a non-collapsible message, all

we need to do is actually to omit the col-

lapse_key parameter in the send request to

GCM servers. Consequently, GCM will send

each message individually. It has to be noted

that GCM does guarantee the order of deliv-

ery for the messages it handles.

The other characteristic of a GCM message,

the time to live (TTL) feature, lets the sender

specify the maximum lifespan of a message

using the time_to_live parameter in the send

request. The value of this parameter must be

from 0 to 2,419,200 seconds, and it corre-

sponds to the maximum period of time for

which GCM will store and try to deliver the

message. Requests that don't contain this

field are assigned the default TTL, which is

the maximum period of 4 weeks. Since

ASETS trading system functions with daily

sessions, starting up every day at hours

00:05, we considered useful to specify the

time_to_live parameter, and set its value to

the number of seconds remained till hours

23:55 hours of the current day, when ASETS

shuts down.

As previously mentioned, a Registration ID

(regID) represents a particular Android ap-

plication running on a particular device.

Once an application has a regID, this does

not need to be changed. The un-registration

should be done only in the case that the user

wants the trading application to stop receiv-

ing messages. The regID is not associated

with a particular logged in user, but it maps

an application to a device. Therefore, to un-

register the application is not a mechanism

for logout user, or for switching between us-

ers.

The premises are that the server that sends

the GCM messages to the Android devices

has to manage the mapping between users,

the regIDs, and individual messages:

 the server-side should maintain a map-

ping between the current user and the

regID; this should include information

about which user is supposed to receive

a particular message; the mapping has to

be persisted on disk, so in the eventuality

of a server crash it can be retrieved, for

operational continuity, once the server is

restarted;

 the trading application running on the

Android device should check to ensure

that messages it receives match the

logged in user.

Taking into account the messaging frame-

work that GCM provides, in connection with

messaging model employed by the ASETS

platform, the solution that we propose as the

outcome of our research relies on three key

components:

 an API for supporting the Android client

side communication;

 the ASETS Bridge Servlet (ABS) which

acts as an ASETS JMS client, residing

within the Apache Tomcat web server,

and creates the link between the An-

droid-based trading GUI and ASETS

server-side; the servlet employs methods

from both asets.android.api and

asets.jms.api - asets.jms.client.api in par-

ticular - since the new bridge component

behaves as a client of the ASETS server-

side resources;

 Android-based ASETS trading GUI, the

client application that provides trading

capabilities from an Android powered

mobile device to ASETS platform.

The overall architecture of our proposed so-

lution is presented in Figure 1.

ASETS Bridge Servlet listens for the An-

droid client HTTP requests, placed on the

web server, and then converts these requests

to JMS based requests that a forwarded to the

corresponding ASETS services.

The entire request flow from the Android

trading application to the ASETS Bridge

Servlet is handled through HTTP socket con-

nections over TCP [8].

52 Informatica Economică vol. 17, no. 3/2013

DOI: 10.12948/issn14531305/17.3.2013.05

Firewall

Web Server

Android

Bridge

Servlet

(ABS)

Google Cloud

Messaging Service

HTTP

Tunnel

Servlet

HTTP over

TCP/IP

ASETS

services

OMS

PMS ESE

PROG
DDF

GCM Flow

JMS Flow

Android

device

Fig. 1. The overall architecture of the proposed solution

The requests are not resolved by ABS syn-

chronously, it returns to the Android applica-

tion only a synchronous acknowledgment, in-

forming it that the request was successfully

received and process. The flow of replies

from the ASETS Bridge Servlet is entirely

asynchronous. The actual data reply is trans-

mitted asynchronously to the Android client

application via GCM service, by a push

mechanism [9].

There are the following scenarios that we

identified and conceived solutions for:

i. HTTP request with asynchronous GCM

reply with message having a data pay-

load under 4Kb – simulates a point-to-

point (p2p) asynchronous request-reply;

ii. HTTP request with asynchronous GCM

reply with message having a data pay-

load over 4Kb;

iii. message push to the client Android ap-

plication of published JMS message via

GCM, with payload under 4Kb – simu-

lates the JMS publishing mechanism for

a previous subscription recorded on the

server-side, via a HTTP request received

from the Android application;

iv. message push to the client Android ap-

plication of published JMS message via

GCM, with payload over 4Kb.

We shall explore in details the steps that are

to be followed in each scenario.

In the case of a simulated p2p asynchronous

request-reply, when the reply message that

has to be sent from ASETS Android Servlet

has less than 4Kb of data payload, the pro-

cess implies:

1. a HTTP request placed by the Android

client application (JSON formatted mes-

sage);

2. the JSON message received by ABS is

un-marshalled, and a JMS request with

reply it tis sent to the corresponding

ASETS service on the server-side;

3. the JMS reply is received by ABS and

the data is marshalled to a JSON format-

ted message;

4. if the JSON formatted message has pre-

sumably less than 4Kb of payload, then

the entire message is delivered to GCM

servers;

5. on the Android device, GCM service re-

ceives the message and passes it to the

corresponding client application.

The mechanism is depicted in the Figure 2.

Informatica Economică vol. 17, no. 3/2013 53

DOI: 10.12948/issn14531305/17.3.2013.05

ASETS

Android

Client

Application

ASETS

Android

Bridge

Servlet

ASETS

Services

JMS

P2P

request

JMS

P2P

reply

Google Cloud

Messaging Service

HTTP request,

JSON format

GCM asynchronous reply,

under 4Kb payload data,

JSON format

1

2

3

4 5

Fig. 2. Asynchronous reply through GCM for data payload under 4Kb

If the reply message that has to be sent from

ASETS Android Servlet has more than 4Kb

of data payload, the process implies the fol-

lowing additional steps, Figure 3:

ASETS

Android

Client

Application

ASETS

Android

Bridge

Servlet

ASETS

Services

JMS

P2P

request

JMS

P2P

reply

Google Cloud

Messaging Service

HTTP request,

JSON format

GCM asynchronous reply, URL

of the over 4Kb payload data

1

2

3

4 5

HTTP request, with

the received URL

HTTP reply with the

payload from URL

6

7

Fig. 3. Asynchronous reply through GCM for data payload over 4Kb, followed by a synchro-

nous HTTP request-reply

4. if the JSON formatted message has more

than 4Kb of payload, then the data is

saved at a temporary URL, and the link

is placed in the GCM message instead of

the actual reply data; the JSON format-

ted message containing the URL it is

sent to GCM servers;

5. on the Android device, GCM service re-

ceives the message and passes it to the

corresponding client application;

6. the Android trading application uses the

URL received via GCM service for cre-

ating a new HTTP request to the ASETS

Bridge Servlet, this time expecting to re-

ceive synchronously the data stored at

the transmitted link;

7. ABS replies synchronously at the HTTP

request with the data stored at the re-

ceived URL; once the reply is sent to the

54 Informatica Economică vol. 17, no. 3/2013

DOI: 10.12948/issn14531305/17.3.2013.05

Android client, the servlet deletes the da-

ta and the temporary created URL.

One of the particularities of a trading system

is that, for example, when a client order is

placed on the market it may not be executed

right away and, therefore, the mechanism for

acquiring updates in the client trading appli-

cation regarding the state of the order cannot

rely on the p2p request-reply model. A pure

JMS client of the ASETS platform can simp-

ly subscribe at a certain topic, in order to re-

ceive the subsequent order updates from the

ASERT market. In the case of an Android

trading client, we need first to subscribe to

the JMS topics of interest, following a pro-

cess which involves:

 a HTTP request from the Android appli-

cation to the Android Bridge Servlet, re-

garding the topic it intends to subscribe

to;

 ABS will convert the Android client re-

quest into a JMS subscription to the top-

ic received in the request.

From that point on, the mechanism of send-

ing ASETS server-side updates to the An-

droid trading application it is presented in

Figure 4.

ASETS

Android

Client

Application

ASETS

Android

Bridge

Servlet

ASETS

Services

JMS

subscribe

JMS

publish

Google Cloud

Messaging Service

GCM push, under 4Kb payload

data, JSON format

1

(2)
N

(3)
N

(4)
N

Fig. 4. Message pushing through GCM for data payload under 4Kb, followed by a synchro-

nous HTTP request-reply

1. ASET Bridge Servlet subscribe to the

topic of interest, specified in the HTTP

request received from the Android trad-

ing application;

2. whenever a updated is generated by the

market and published at the topic con-

cerned, the ABS captures the JMS pub-

lished message and marshals it to a

JSON format message to be sent to

GCM servers;

3. if the JSON formatted message has pre-

sumably less than 4Kb of payload, then

the entire message is delivered to GCM

servers;

4. on the Android device, GCM service re-

ceives the message and passes it to the

corresponding client application.

It has to be noted that there may be multiple

published messages and hence the presence

of N superscript at the steps that correspond

to the pushing mechanism and flow.

If published JMS message marshalled JSON

format is has a data payload over 4Kb, then

pushing process involves some additional

steps, as Figure 5 shows.

If the JSON formatted message has more

than 4Kb of payload, then the data is saved at

a temporary URL, and the link is placed in

the GCM message instead of the actual reply

data.

Informatica Economică vol. 17, no. 3/2013 55

DOI: 10.12948/issn14531305/17.3.2013.05

ASETS

Android

Client

Application

ASETS

Android

Bridge

Servlet

ASETS

Services

JMS

subscribe

JMS

publish

Google Cloud

Messaging Service

GCM asynchronous reply, URL

of the over 4Kb payload data

1

(2)
N

(3)
N

HTTP request, with

the received URL

HTTP reply with the

payload from URL
(5)

N

(6)
N

(4)
N

Fig. 5. Message pushing through GCM for data payload over 4Kb, followed by a synchronous

HTTP request-reply

Later on, the Android trading application us-

es the URL received via GCM service for

creating a new HTTP request to the ASETS

Bridge Servlet, this time expecting to receive

synchronously the data stored at the transmit-

ted link.

As noted above, there may be multiple pub-

lished messages and hence the presence of N

superscript at the corresponding steps.

3 The Android-based Trading Application

ASETS Android application is designed and

implemented using the model-view-controller

architectural pattern. The graphical interface

of the application supplies direct access to

the main screens that put the user in control

over his or her trading activity:

 Orders tab – offers access to the Orders

and Executions panels, which list the in-

vestor’s orders placed during the current

trading session, along with their associ-

ated executions;

 Instruments tab – provides the tradable

financial instruments on the ASETS

market;

 Portfolio tab – displays the portfolio of

financial instruments currently owned by

the investor;

 Trades tab – offers access to the list of

trades generated by the trading platform

based on the investor’s activity.

In order to offer the invertors a as close as

possible trading experience that they enjoy

using the ASETS GUI implemented as a Java

applet which can be launched from the portal

www.bursa.ase.ro, we designed the graphical

interface for being rich enough in features,

yet intuitive and simple to be used. Since on

the Android platform the user interface is en-

tirely built around a set of gestures executed

on a touch screen, we had to design and im-

plement a new trading application from the

ground up.

In Figure 7 are shown the screens which are

accessible through dedicated tabs, for offer-

ing information regarding: the list of tradable

financial instruments on the ASETS market,

the list of trades generated by the trading

platform based on the investor’s activity, and

the portfolio of financial instruments current-

ly owned by the investor.

For instance, the logging in procedure in-

volves the transmission of a HTTP request,

containing the previously registered user ID

and password required for securely accessing

the ASETS system [10]. Since the users’ data

is cashed by the ASETS Bridge Servlet, there

correctness of the user credentials can be

confirmed synchronously thought the same

HTTP channel [11].

http://www.bursa.ase.ro/

56 Informatica Economică vol. 17, no. 3/2013

DOI: 10.12948/issn14531305/17.3.2013.05

Fig. 7. Lists of instruments, generated trades, and investor’s portfolio

In the Figure 6 below is shown the identifica-

tion icon of the ASETS Android based trad-

ing GUI, along with the succession of

screens associated with logging in procedure.

Fig. 6. ASETS Android based GUI identification icon, along with the logging in procedure

On the Android client-side application, both

HTTP requests/replies and GCM messages

are formatted using the lightweight data-

interchange format JSON (JavaScript Object

Notation). The Java objects created within

the Android application go through a mar-

shalling process and JSON formatted mes-

sages are generated prior being sent as re-

quests to ASETS Bridge Servlet over HTTP.

On the servlet side, the JSON formatted mes-

sages are un-marshalled, and the original Ja-

va object are recomposed and subsequently

sent to ASETS services via methods provid-

ed by asets.jms.client.api.

In the context of a trading application in par-

ticular, one of the very useful features that

Informatica Economică vol. 17, no. 3/2013 57

DOI: 10.12948/issn14531305/17.3.2013.05

GCM service provides, is the ability to deliv-

er messages to an Android application on an

Android device even if the application is not

running. As long as the Android based appli-

cation is set up with the proper broadcast re-

ceiver and permissions, the system will wake

up the application via Intent broadcast when

a message arrives.

In order for the ASETS Android application

to register to the ASETS Bridge Servelet, it

needs to know the Sender ID, which is the

identification of the servlet within the GCM

service cloud. The Android application iden-

tifies itself for registering to receive messag-

es by using an Application ID (the package

name from the manifest).

The following sequence of code shows how

these constants, part of the GCM API, are to

be employed by the Android client applica-

tion.

public class AppConstants {

public static final String

GOOGLE_API_PROJECT_NUMBER_USED_AS

_SENDER_ID = "460443047907";

public static String DE-

VICE_GCM_ID = "";

}

final String regId = GCMRegis-

trar.getRegistrationId(this);

if (regId.equals("")) {

GCMRegistrar.register(this, Ap-

pCon-

stants.GOOGLE_API_PROJECT_NUMBER_

USED_AS_SENDER_ID);

} else {

System.out.println("Device al-

ready registered");

AppConstants.DEVICE_GCM_ID =

regId;

}

The String returned by GCMRegis-

trar.getRegistrationId() it is an ID is-

sued by the GCM servers to the Android ap-

plication that allows it to receive messages.

Once the ASETS Android application has

obtained the registration ID, it sends it to the

ASETS Bridge Servelet, which uses it to

identify each device that has registered to re-

ceive messages for a given Android applica-

tion [10]. In other words, through a registra-

tion ID is identified a particular ASETS An-

droid application running on a particular de-

vice, and implicit a certain investor that uses

ASETS trading platform.

As we briefly mentioned in the requirements

for our solution, the ASETS Bridge Servlet

has to maintain a mapping between the user

of the request and the regID. The mapping

has to be persisted on disk, so in the eventu-

ality of server crash it can be retrieved, once

the server is restarted, in order to offer opera-

tional continuity. The ABS ensures the per-

sistence of users, requests and regIDs map-

ping by employing SQLite. In this way the

servlet resorts to a reliable, standardised and

light weight solution to persist data in a sin-

gle disk file [12]. Furthermore, the format of

the file is not platform dependent, ensuring

the ASETS Bridge Servlet can be deployed

along with Apache Tomcat webserver on dif-

ferent machines with a different architecture.

For adding an order to the market, the GUI

provides a button marked with “+” signs and,

by pressing it, a new window pops up and al-

lows the user to enter the data for the new

order, Figure 8.

ASEST Bridge Servlet is the key component

of our proposed solution, and along with

asets.android.api, integrates the ASETS An-

droid application within the ASETS trading

platform. The servlet receives HTTP requests

in JSON format from the Android client and,

from that point on, it behaves as a standard

ASETS client, built with asets.jms.api. In

addition to that is has to manage the connec-

tions from the Android devices, in order to be

able to route back the JMS messages gener-

ated by the ASETS server side, converting

them in JSON format and delivering the

JSON formatted messages to GCM servers.

The servlet has to maintain for each Android

registered device the corresponding JMS

connections to the ASETS platform. When a

new JMS message is received from one of

the ASETS service, let’s say that an order

matching occurs and a new execution is gen-

erated, this message has to be sent to the des-

tination device via GCM service, regardless

of having or not the Android application still

running of that particular device.

58 Informatica Economică vol. 17, no. 3/2013

DOI: 10.12948/issn14531305/17.3.2013.05

Fig. 8. Orders and Executions panels, and the procedure of adding a new investor’s order

The Apache Tomcat web server creates a

new thread for the received HTTP request.

Since the ASETS Bridge Servet interacts

with JMS provider through a single thread

that deals with all Android based clients,

there is necessary to synchronize the method

that passes the HTTP request received by

doPost() method, with the thread that manages

the JMS connections.

4 Conclusions
In this paper we briefly presented the current

results of our ongoing research focused upon

conceiving and implementing a software so-

lution for exposing the trading services of-

fered by our academic trading platform

ASETS, to mobile trading applications, based

on Android platform. We proposed a com-

munication mechanism which employs the

services supplied by Google Cloud Messag-

ing servers, and conceived an integrated solu-

tion to support ASETS Android based trad-

ing GUI. Our intention is to further explore

the ability of employing GCM service for

price data dissemination and market alerts.

In addition to the herein presented results, we

are exploring the possibility of leveraging the

ASETS server-side trading system function-

ality through a JavaScript web-based client,

employing AJAX, which is an Asynchronous

JavaScript And Xml mechanism for real time

web applications [13]. The ActiveMQ mes-

sage provider offers support for AJAX by the

means of a servlet, AMQ AjaxServlet, which

is designed to handle the JMS requests and

responses straight in JavaScript client-side

web application. The AMQ features are pro-

vided on the client side by the amq.js script,

opening the possibility of creating a complex

and highly real time web trading applica-

tions, taking full advantage of the pub-

lish/subscribe nature of ActiveMQ. This re-

search path may potentially lead to a more

generic solution for exposing the core func-

tionality of ASETS trading platform to a

broader range of platforms and mobile devic-

es.

Acknowledgment
We would like to extend our thanks and ap-

preciations to the following students of The

Master Program in Economic Informatics,

series 2012-2013, who had a significant con-

tribution to the integration effort required by

this research project – in alphabetical order:

Cătălina Ioana BOGOŞ, Carmen Daniela

BRIŞAN, Ştefania CIRIPIALĂ, Claudia-

Anitta IVAŞCU, Dan-Marian MIRESCU,

Stefăniţă Alexandru MITRAN, Marius Con-

stantin MOGA, Ioana MOLDOVAN, Radu

https://svn.apache.org/repos/asf/activemq/trunk/activemq-web-demo/src/main/webapp/js/amq.js

Informatica Economică vol. 17, no. 3/2013 59

DOI: 10.12948/issn14531305/17.3.2013.05

NICULAE, Silviu NICOLESCU, Paul PO-

TERAŞI.

References
[1] M. Richards, R. Monson-Haefel, D. A.

Chappell, Java Message Service (Second

Edition), O’Reilly Media Inc., Sebasto-

pol, California, 2009

[2] C. Vinţe, “Upon a Message-Oriented

Trading API”, Informatica Economica

Journal, Vol. 14, nr. 1/2010, pp 208-216,

ISSN 1453-1305, Available:

http://revistaie.ase.ro/content/53/22%20V

inte.pdf

[3] C. Vinţe, “ASETS – An Academic Trad-

ing Simulation Platform”, Informatica

Economica Journal, Vol. 14, No 2/2010,

pp 97-107, ISSN 1453-1305, Available:

http://revistaie.ase.ro/content/54/10%20V

inte.pdf

[4] S. Mffeis, Professional JMS Program-

ming, Wrox Press 2001, pp. 515-548,

Available: http://www.maffeis.com/ arti-

cles/softwired/profjms_ch11.pdf

[5] E. Vollset, D. Ingham, P. Ezhilchelvan,

“MS on mobile ad-hoc networks”, Per-

sonal Wireless Communications, PWC

Conference 2003, pp. 40-52.

[6] Google Cloud Messaging for Android, In-

ternet:

http://developer.android.com/google/gcm

/index.html, as of August 1st, 2013

[7] C. Vinţe, “Integrated JMS-GVM Solution

to Support Android Based Trading GUI”,

Proceedings of the 12th International

Conference on Informatics in Economy,

IE 2013, April 25-28, 2013, Bucharest,

Romania, ASE Printing House, ISSN

2284-7472, ISSN-L 2247-1480, pp. 20-

25.

[8] A. S. Tanenbaum, M. van Steen, Distrib-

uted Systems - Principles and Paradigm,

Vrije Universiteit Amsterdam, The Neth-

erlands, Prentice Hall, New Jersey, 2002,

pp. 99-119, 414-488, 648-677

[9] Google Cloud Messaging APIs:

http://developer.android.com/reference/c

om/google/android/gms/gcm/GoogleClou

dMessaging.html

[10] C. Toma, M. Popa, C. Boja, “Mobile

Application Security Frameworks” , An-

nals of the Tiberiu Popoviciu Seminar –

Supplement Romanian Workshop on Mo-

bile Business, vol. 6, 2008, Mediamira

Science Publisher, Cluj-Napoca, pp. 79–

93, ISSN 1584-4536

[11] A. S. Tanenbaum, Computer Networks -

Fourth Edition, Vrije Universiteit Am-

sterdam, The Netherlands, Pearson Edu-

cation Inc., Prentice Hall PTR, New Jer-

sey, 2003, pp. 651-673, 772-784

[12] SQLite web resources:

http://www.sqlite.org/

[13] ActiveMQ and Ajax web resources:

http://activemq.apache.org/ajax.html

Claudiu VINŢE has over sixteen years of experience in designing and im-

plementing software solution for trading systems and automatic trade pro-

cessing. In 2007 Claudiu co-founded Opteamsys Solutions, a software pro-

vider in the field of securities trading technology and equity markets analysis

tools. Previously, he was for over six years with Goldman Sachs in Tokyo,

Japan, as Senior Analyst within the Trading Technology Department. Clau-

diu's expertise in trading technologies also includes working in Tokyo with

Fusion System Japan, and Simplex Risk Management as Software Engineer, and Senior Soft-

ware Engineer, respectively. Since 2009, Claudiu has been given lectures and coordinated the

course and seminars upon The Informatics of the Equity Markets, within the Master’s program

organized by the Department of Economic Informatics. He holds a PhD in Economic Cyber-

netics and Statistics from The Bucharest Academy of Economic Studies. His domains of in-

terest and research include combinatorial algorithms, agent-based simulation, middleware

components, algorithmic trading and web technologies for equity markets analysis.

